miércoles, 26 de agosto de 2009

En Ourense (Galicia - España), descubren que la capilla de Celanova sigue la geometría de Euclides


Hacia el año 1000, Ibn Al-Haytam escribió que la belleza es una propiedad divina fruto de la proporción y de la armonía. Pues esto se da en la pequeña Capilla de San Miguel de Celanova, en cuyo dintel está la frase: «A ti, Dios, te creemos el autor de esta obra». El investigador Roberto Vázquez Rozas, de la Universidad de Vigo, sostiene que esa afirmación solo se puede entender si los promotores de esta joya siguieron con detalle las teorías estéticas de la época y anteriores. Dice Vázquez que a Celanova llegó el conocimiento del Almagesto de Ptolomeo y la geometría de Euclides, que ya se conocían en la Córdoba del siglo X. Y tal sabiduría debió llegar, añade, «por algún especialista musulmán o de algún mozárabe andalusí».
Quienes encargaron el edificio, San Rosendo y su hermano el conde Froila, «vieron que su orientación, técnicas y proporciones eran divinas porque tenían presente la estética carolingia, asturiana y cordobesa», añade Vázquez Rozas. «San Miguel de Celanova, datada hacia el último tercio del siglo X, por ser obra divina, como reza el dintel, tuvo que servir de ejemplo arquitectónico de un inmueble que cumple todo lo que de una obra perfecta esperaban los teóricos», señala el investigador. «La capilla se levanta en terrenos del viejo Vilar, hoy Celanova, cedidos por Froila para hacer un monasterio allá por 936, y esta capilla es lo único que nos queda del primitivo cenobio». Roberto Vázquez comprobó que San Miguel, por sus medidas, hace honor a su perfección. Como decía San Agustín, la belleza de un edificio está en la mutua relación de todas sus partes y esa relación es armonía, proporción y canon, es decir, adecuación a una medida que gravita sobre el número. En este edificio sus contemporáneos veían su fábrica, como señala Umberto Eco, como un reflejo de la virtud participativa de Dios.
La capilla tiene tres volúmenes, uno que hace de nave, un segundo espacio central que es un cuadrado en planta, y el ábside. Vázquez señala que el cuadrado central puede ser el origen de la obra con sus 383,6 centímetros de lado. «El lado del cuadrado o módulo central parece ser el doble de la longitud del rectángulo del ábside, que mide 191,5 centímetros de largo por 231 de ancho
». Esto hizo sospechar al profesor, pues dichas medidas son similares a las del sistema árabe. «Hay variaciones de tan solo milímetros en los laterales sur y norte del cuadrado central y la diferencia es menor en los laterales sur y norte del rectángulo del ábside, que miden 6 pies árabes, es decir, 191,5 centímetros», señala Vázquez Rozas. Este observa que en San Miguel aparece una relación de proporción de 6, 9 y 12 pies árabes que se corresponden respectivamente con el ábside, la nave y el espacio cuadrado central.
«Si la longitud del cuerpo del ábside es la mitad del lado del cuadrado central, el volumen exterior de la nave o primer espacio tiene una longitud de tres cuartos del lado del cuadrado o espacio central», señala el autor del trabajo. En todo momento se cumple lo que años atrás avanzó el profesor Manuel Núñez, es decir, que San Miguel tiene una arquitectura basada en leyes matemáticas y proporcionales. Roberto Vázquez asegura que las proporciones del alzado exterior responden a los principios de la sección áurea, tal como la exponía Euclides allá por el 300 antes de Cristo. Aparece el rectángulo áureo, construido a partir de la base de 6 pies árabes, dice el autor de la investigación, si consideramos la altura total del cuerpo del ábside incluyendo el tejado. «Esa medida es la mitad exacta de la altura máxima del edificio».

No hay comentarios:

subir imagenes
subir imagenes
Create your own Animation